ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

AIGC与创业7mos agoupdate lida
90 0 0

文章主题:Chat GPT, AI大模型, 汉王科技

666ChatGPT办公新姿势,助力做AI时代先行者!

🌟文章撰写大师在此!👀原文出自权威平台——『DoNews』(只需搜索一下~💡 ID:ilovedonews),由业内知名人士曹双涛匠心独运,文笔犀利。📝经过杨博丞的精心编辑,内容更加精炼且引人入胜。🚀创业邦已获得授权,确保每字每句都饱含价值。🌟若想了解更多行业动态,这里无疑是你的首选!🏆记得关注我们,获取一手资讯哦!💖

🎉Chat GPT的崛起速度令人惊叹!仅在11月发布以来,这款人工智能聊天工具短短两个月内的月活用户数就已经飙升至惊人的1亿里程碑,创造了消费级应用增长的惊人记录。它以闪电般的速度征服了广大用户,成为全球科技领域的耀眼新星,SEO优化关键词:#ChatGPT用户增长# #消费级应用程序最快增速# #人工智能聊天工具革命

ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

图源:西南证券

🔥Chat GPT 4.0大升级!🚀AI写作新高度🌟在文本创作的世界里,GPT-4犹如一位全能才子,文思泉涌、一挥而就。从深情的诗篇到专业的邮件文案,再到引人入胜的广告创意和剧本构思,它都能信手拈来,创作力惊人!🔥特别是在高考作文领域,AIGC技术的加持下,GPT-4在短短一分钟内就能生成多达40余篇高质量文章,其表现之优秀,让75%的考生望尘莫及。平均每篇文章评分高达48分,这不仅是速度与技巧的胜利,更是AI智慧的闪耀!🏆欲感受其魔力,只需轻轻一点,让我们一起见证科技如何赋能教育,刷新创作边界!📚💻

🌟🚀在人工智能浪潮中,众多国内巨头已竞相打造自家的AI巨擘,引领技术革新。比如,百度的”文心一言“,腾讯的”混元”, 阿里的”通义”,以及华为的”盘古“,这些重量级模型犹如璀璨星辰,闪耀着科技未来的光芒。他们的出现,无疑为行业注入了强大的动力和创新活力,引领我们步入智能新时代。记得关注哦!🌟

🎨Chat GPT引领AI浪潮,二级市场热度飙升,相关概念股票乘势起飞!🔍以人工智能领域的领头羊——人脸识别先锋汉王科技为例,尽管公司在2022年的业绩预告中显示净利润预期为-9800万至-14000万,但这并未阻挡其在AI风暴中的熠熠生辉。📊股价的波动,反映出市场对其技术与服务的强烈关注。曾经一度市值仅40.85亿的汉王科技,如今仿佛焕发新生,受到投资者的密切关注。尽管面临亏损压力,但Chat GPT的热度无疑为它带来了新的发展机遇。💡展望未来,人工智能领域的创新和应用将更加广泛,像汉王这样的企业有望在AI革命中实现逆袭。对于潜在投资者来说,这或许是一个值得关注的信号,AI概念股票的波动背后隐藏着投资机会。记住,市场瞬息万变,保持敏锐洞察是关键!📈#ChatGPT#AI概念股票#汉王科技#业绩预告#市值逆袭

🎉 惊喜!汉王科技2月后股价一路飙升,3月峰值触及30.66元每股高峰!与1月15.34元的涨幅高达58%之多,市场表现亮眼!🚀 令人瞩目的股价增长背后,是公司稳健运营和行业趋势的良好反映。SEO优化词汇:#汉王科技股价飙升#1月15到3月30.66涨势惊人 SEO助力,投资者密切关注中…

ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

图源:雪球

但硬币的另一面却是关于Chat GPT的争议声音越来越大。3月30日,人工智能和数字政策中心向美国联邦贸易委员会投诉,试图阻止向消费者发布强大的AI系统。次日,意大利隐私监管机构宣布境内暂时禁用Chat GPT。4月2日,在三星引入Chat GPT不到20天的时间内,已先后出现三次泄密事件等等。

针对以上问题,在美国当地时间5月16日召开的Open AI首次听证会上,围绕着外界所关注的由AI所产生的版权侵害,虚假内容、失业问题,数据安全等问题也展开了相关讨论。

本次接受质询的对象包括Open AI CEO Sam Altman,IBM副总裁兼首席安全官Christina Montgomery,纽约大学教授Gary Marcus。而本次听证会上的一些核心内容,也让我们提前感知到未来Chat GPT行业发生的一些变化。

ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

图源:Open AI听证会

01.Chat GPT发展依然坎坷

针对3月29日,科学界联名呼吁:所有AI实验室立即暂停训练比GPT-4更强大的AI系统,为期至少6个月的联名信。

作为联名信签署人之一的Gary Marcus在会上解释道,签署联名信并不是要求暂停AI研发,而是希望在具备规范、安全的AI管理措施之前,暂停部署比GPT-4更大的AI模型。若现阶段将这些具备超级功能的AI,全部交给普通人使用,这未免太过于冒进了。

对此,Sam Altman解释道,未来6个月内Open AI暂无推出类似于GPT-5的计划。因为现阶段Open AI对部署更高版本的Chat GPT仍存在诸多顾虑。但与此同时,Sam Altman也提出了一个灵魂问题:若我们暂停6个月的AI研发,很有可能就会与时代脱节,6个月之后我们要怎么办呢?还要再停6个月吗?

如Sam Altman所言,若超级AI大模型需不断保持自身优势的话,则需要对模型进行不断反复的训练,但在训练过程中也产生了诸多问题。比如说,高成本和商业化问题。

以Chat GPT为例,2018年Open AI在训练GPT-1时,所用到的参数数量和数据训练量分别为1.17亿和5GB。但在2020年训练GPT-3时,以上两项数字则分别增长到1750亿和45 TB,GPT-4的训练参数量更是高达1.6万亿。

另据Open Al发布的相关数据显示,训练13亿参数的GPT-3 XL模型训练一次消耗的算力约为27.5 PF-days,训练1750亿参数的完整GPT-3模型则会消耗算力3640 PF-days(以一万亿次每秒速度计算,需要3640天完成)。

ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

图源:Open Al

庞大的数据量以及算力决定了搭建AI模型为典型的重资金产业。以GPT-3模型消耗的算力3640 PF-days来看,相关证券机构测算,保守估计前期成本至少投入在200多亿元。并且Chat GPT在前期访问阶段初始投入近十亿美元,单日电费数万美元。训练阶段,单次训练约为百万至千万美元。

然而,在高成本的背后,目前关于整个Chat GPT不管是在TOC端还是TOB端的商业化仍不清晰。以TOB端为例,Chat GPT若想要完全打开TOB端市场,也面临着诸多现实问题。

一方面,如何打消TOB端的诸多顾虑,进而让TOB敢用Chat GPT。比如说,目前TOB端普遍担心因使用Chat GPT而产生数据泄露风险,进而对企业业务产生诸多不利影响。

但正如美国NIST(国家标准与技术研究院)发布了《AI风险管理框架1.0》所提到的那样,AI模型的优化可解释性和隐私增强性之间会存在矛盾;或者在数据较稀疏的情况下,隐私增强技术可能导致有效性降低。过度关注某一方面特性,例如:高度安全但不公平的系统、有效但不透明和不可解释的系统以及不准确但安全、隐私增强和透明的系统都是不可取的。

另一方面,对标围绕TOB端的SaaS产业的发展来看,TOB端产品只有给企业带来真正“降本增效”的价值,企业才愿意付费。但由于TOB端行业的分散性、差异性、多而乱的特点,行业很难形成规模效应。

目前国内SaaS产业所走的“以低价换取市场份额”的路线,也决定了当前国内和SaaS相关的企业,除具有先发优势的阿里云实现盈利,绝大多数企业仍以亏损为主。

那么未来Chat GPT在为TOB端服务时,其价格到底要如何制定呢?是走SaaS行业以价换量的路线,或是将价格定得很高,只服务小部分企业呢?但不管走哪个路线,均决定了Chat GPT在TOB端想要实现盈利,并非易事。

另外考虑到当前全球经济进入到新一轮下行周期,未来诸多行业业绩承压已是不争的事实。因此,不管是投资机构,或是大厂又是否有足够的现金流和足够的耐心,来真正探索出各类“超级AI大模型”的盈利,这里仍值得商榷。

02.生成式AI仍面临外部多重压力

若成本和收益问题超级AI大模型内部需面临的问题,来自外部的种种质疑也决定了生成式AI后续的发展并不明朗。

其一,如何对AI公司进行监管。Sam Altman提出的建议如下:对AI厂商提供许可证,并吊销不符合政府标准的厂商的许可证。为AI大模型创建一套安全标准,包括评估其风险,大模型必须通过一些安全测试;指派第三方专家独立审核AI产品的各方面指标,支持创立一个为AI制定相关标准的国际组织,由美国领导。同时,Sam Altman和Gary Marcus均呼吁成立专门的TOG机构,负责对AI的监管。

事实上,Sam Altman 和 Gary Marcus所提出的这些建议,也的确符合未来超级AI大模型的需要。比如说,对标国内的网约车拍照和金融支付拍照的发放来看,政府监管加强后,能让行业从此前的野蛮生长阶段逐渐回归到理性增长阶段。

但仍需要指出的是,因全球不同国家的文化、政治差异性较大,又叠加自2022年全球地缘冲突的不断升级和加剧,一套全球可行的AI式标准制定未来估计需要很长的时间才能制定。在尚无清晰的标准下,也决定了未来超级AI大模型的出海业务,将面临着层层压力。

其二,如何解决反垄断问题。在听证会上,参议员Cory Booke提出了一个问题:Open AI由微软支持,Anthropic则由谷歌支持。那么,未来随着这些公司的规模越来越大,其必然也会对人们的生活影响越来越大,并有可能在商业上实现垄断。

对此,Sam Altman则解释道AI大模型的研发相对困难,只有少数企业能够研发出AI大模型。这并不会造成垄断,反而会在一定程度上降低监管难度。但坦白来说,Sam Altman的解释并不成立。一方面,如上文所述,基于研发AI大模型对企业的资金、技术均要求极高,目前AI大模型也的确被掌握在大厂手中。

但另一方面,从国内多个行业的经验来看,当大厂完全主导后,行业必然会出现垄断现象,比如网约车行业、在线货运平台、外卖行业等等。而随着各国政府对本国反垄断法律法规政策制定的愈发完善,不排除后续各国政府对由超级AI大模型所产生的垄断问题,监管只会更加严格。

其三,针对外界所关注的由Open AI所产生的版权以及版权付费问题。Sam Altman则表示,未来Open AI会拿出相关政策保护地方新闻业的发展。但对于内容创作者版权权益的问题,Sam Altman并没有给出明确的回复。

事实上,对于Sam Altman的不回复虽能理解,毕竟Chat GPT在内容创作上需海量的内容作为支撑,而从国内内容平台给到创作者的收益来看,Open AI若是真正为创作者付费的话,这必然会加重Chat GPT的成本投入。

但坦白来说,Chat GPT对创作者内容的随意抓取,并且不付费的方式,无异于杀鸡取卵。一旦后续内容创作者进行联合,全面抵制Open AI的这种做法,未来GPT更高版本是否能继续保持优势,仍有待观察。

而从现阶段来看这种情况已经出现,比如说,去年柏林两位艺术家搭建了一个名为“我正在被用来训练吗”的网站,艺术家可以检索自己的作品是否进入了AI训练数据库。但Chat GPT所面临的问题并非个案,而是国内外AI大模型公司都必须要思考的问题。

03.AI大模型是否会引发大规模失业?

在听证会上,Gary Marcus指出人们不应该小看AI对就业带来的影响。事实上,Gary Marcus的担忧并非空穴来风。此前IBM曾宣布:暂缓可以被AI取代的岗位的招聘,约7800人将被永久淘汰。

微软也宣布将于6月底进行裁员,裁员对象主要为记者和编辑,并将在未来加大力度使用AI技术取代人类新闻编辑。“新上岗”的AI算法将会代替人类编辑选取可报道的新闻事件、改写新闻标题、寻找文章配图等工作。

但Sam Altman却认为,目前GPT-4仍能被人类很好的所控制和使用,它会让一些工作自动化,甚至被替代掉。但人类利用AI大模型可以拥有更多能力、更多时间追求自己喜欢的事物,这将创造出更多工作机会。

IBM的Christina和Sam Altman有着一致的观点。她认为,AI大模型“将会改变每一项工作”,如今的工作重点应该是做好新老工作的过渡。到2030年,IBM将培训3000万个人掌握当今社会所需的技能。

事实上,Sam Altman和Christina说法并非没有道理。现阶段,AIGC的确可以创作海量的内容,但AIGC毕竟只是工具,缺乏人类的情感和思考能力。而人类的情感和思考能力,在诸多工作岗位中发挥着重要作用。

以内容创作为例,作家余华曾指出:从我们目前对那个GPT的理解

就他的能力,如果他要写小说的话,他大概能写出中庸的小说。但他不会写出充满了个性的小说,因为他是大量的那种文本,他可能把小说写得很完美,但是其实是很平庸。

在以电商行业的客服岗位为例,从事多年电商客服工作的李洋洋告诉我们,在处理客户的售后过程中,最为核心的地方在于需根据和客户沟通过程中的语气、文字,推测出当前客户的情感,并做到有针对性地处理客户的问题。若单纯使用AI大模型回复客户售后问题,这不但无法处理好客户的问题,反而还会降低售后质量。

而且拉长维度来看,若未来各类AI大模型具备和人类一样的情感,这必然会引发世界范围内的恐慌,不排除AI大模型会出现被关停的命运。但当AI大模型之充当辅助性工具后,也面临着一个问题。即它的能力和价格是否匹配,ToC端又是否愿意付费呢?

结语

事实上,任何新兴事物从成熟到发展,从来都是不走直线走曲线。但相较于其他行业而言,AI大模型所牵扯到的失业问题、各种法律风险、垄断问题、成本和收益等等,均注定了国内外任何一家AI大模型厂商在未来AI大模型商业化的探索之路上都难言轻松,对于后续AI大模型的发展是否能达到市场预期,仍需要时间来观察。

本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系

ChatGPT狂飙,AI大模型跟进,未来6个月我们要做什么?

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!

© Copyright notes

Related posts

No comments

No comments...