文章主题:自动驾驶, AI数据服务, 数据标注, 人工智能训练师
本文来自微信公众号:新周刊 (ID:new-weekly),作者:徐倩影,题图来自:视觉中国
2023年第一季度,国内多家互联网企业相继推出类ChatGPT产品。
🌟🚀国内AI领域迎来创新热潮!复旦邱教授团队引领风潮,发布了首个大型对话语言模型MOSS,面向大众开放内测,期待大家的热情参与!🎉百度紧随其后,推出了类ChatGPT的智能产品“文心一言”,为科技生活增添一抹亮丽色彩。🔥阿里云也不甘示弱,自主研发的通义千问已开始邀用户体验,探索未知的智慧世界。💡腾讯混元AI大模型的研发动态也引起了广泛关注,预示着行业将进一步加速发展。🚀每一款新模型都是一次技术突破的尝试,它们共同推动中国AI企业迈向更高峰!🏆让我们共同见证这个科技盛宴,为中国AI加油!🌟
🌟随着互联网巨头纷纷押注ChatGPT,数据标注行业的杨科琪观察到了一波显著的增长浪潮。然而,这股热潮能否持久呢?🤔目前来看,国内AI企业虽多,但真正实现商业化盈利的寥寥无几。对于他来说,业务量的短暂增长就像一阵风,来得快去得也急。🚀面对激烈的市场竞争,如何在AI这片蓝海中找到稳定的利润点,是行业共同面临的挑战。
早在2017年,伴随无人驾驶与阿尔法围棋(AlphaGo)带来的AI浪潮,数据标注行业逐渐进入大众视野。同年,国务院发布《新一代人工智能发展规划》,明确新一代人工智能发展三步走战略目标,人工智能上升为国家战略层面。
2019年,即人工智能训练师被纳入国家职业分类目录的前一年,杨科琪和朋友在中国西北的一个小县城开启了AI数据服务生意。杨科琪说:“实际上,职业培训与做业务是两回事,在数据标注公司,聪明、用功的人学习一周就能上手。”在他看来,数据标注是一份门槛低且又有些枯燥的工作,但这并不影响其成为时下中国部分县城流行的职业之一。
🌟2020年,杨科琪毅然转身,投身于AI数据领域的领头羊,他坚信数据标注的未来必然是一个专业化与高度职业化的黄金时代🔍。在那里,他找到了一个更广阔的舞台,用专业技能服务着数据的世界🏆。
以下为杨科琪的自述。
是安逸还是无趣?
🎉🚀【超大规模AI培训基地】🔥💻 1000个席位,1000台顶尖设备,现已有800位人工智能精英在此挥洒汗水!👀🔍 每日专注于框画精准、画面放大、框线微调,严谨审核的每一个环节。身处舒适环境,网络畅通无阻,小小2平米空间,孕育大智慧。💼💻📚👩💻 他们在这里,用科技点亮未来,每一份努力都值得尊敬。设施齐全,只为打造最高效的AI人才培养基地。🌍💼SEO优化提示:#人工智能 #工作环境 #精英汇聚 #技能培训 #未来发展
🚀📊我们的核心专注于创新无人驾驶解决方案!👩💻通过尖端技术,标注员只需轻轻一点,便能在高清框中精巧地勾勒出汽车轮廓,放大细节,微调边缘线条,确保每个元素都精准无误。🔍选中左上角的车辆标签,瞬间完成高质量图像处理。让无人驾驶技术引领未来出行,每一环节都严谨细致,只为打造卓越的自动驾驶体验!🏆
所谓人工智能训练师就是让汽车在行驶过程中自动识别马路。如果只是将视频传给计算机,计算机是无法识别的,需要大量的标注员将视频中的道路框出,再交给计算机,计算机多次接收此类信息后,才能逐渐学会在视频和照片中识别出道路。
今年3月,德勤中国发布的研究表明,人工智能基础数据服务领域中,自动驾驶占比高达52%,引领行业数据需求激增。自动驾驶AI算法的不断进化和海量训练数据的涌现,催生了数据需求的井喷式增长。相较于其他项目,自动驾驶业务展现出更强的稳定性与长期性,服务周期也相对较长。值得注意的是,这些趋势对于优化搜索引擎SEO和提升相关关键词的排名具有积极影响。
人工智能的三大基石是数据、算力与算法。我们数过羊、数过木头,还数过铁块,涉及的行业有医学类、安防类、现在的自动驾驶等,还接过看手相的一个项目,甲方要求我们给手掌上的各种手纹进行标注,很多员工都开始研究手相,挺好玩的。一般而言,视觉类的内容要做到机器准确识别,至少需要10万张图片。对于AI产品,数量越多、质量越高的数据,往往越能够训练出更“聪明”的模型。
标注员一天的工作内容就是画框线,根据项目的难易程度,一个框3分至8分钱,工作日8小时要画2000个框以上,人均月收入在3000元至4000元。
以我们公司为例,人员流动率在30%至40%,因为工作比较简单,每天8小时坐在电脑前,做着重复性工作,对于有的人而言是一份还算安逸的工作,但对另一些人而言就显得非常枯燥和无趣。
一个AI产品的诞生一般需要经历数据准备、模型训练与优化、模型管理、推理应用等4个模块,在国内已经形成了非常成熟的全产业链。目前,我所在的公司在做的就是数据准备,包括数据生产、数据清洗、数据标注三大方面。像我们这种布局在县城的数据标注公司,一般主要负责数据清洗和数据标注。清除模糊的图片、噪声太多的语音、错误的文本内容后,我们再进行画框线和数据标注,根据甲方的不同需求进行操作。
技能等级认定中的初级工
根据《人工智能训练师国家职业技能标准(2021年版)》的定义,人工智能训练师是使用智能训练软件,在人工智能产品使用过程中进行数据库管理、算法参数设置、人机交互设计、性能测试跟踪及其他辅助作业的人员。
在我看来,虽然标注员也被称为人工智能训练师,但如果按照去年发布的《关于开展新职业技能等级认定工作的通知》的内容,标注行业内的人工智能训练师在技能等级认定中应该属于初级工,在其之上还有4个更高的职业技能等级。
其实,拿证和做业务真是两回事。考取职业证书,按照职业教育的要求需要上满60个课时,课程中会系统学习人工智能的概念、未来的发展方向,以及相对完整的知识构架逻辑。但是在标注行业,在数据标注公司,聪明、用功的人学习一周就能上手,只要会使用标注工具就能胜任。
标注行业作为劳动密集型产业,运作模式主要有两种。一种是专业AI数据服务提供商自己雇人自己做;另一种是他们接到业务后发包出去,使用更具性价比的人员或公司。我所在的公司也属于后者,“层层发包”在标注行业比较常见。
数据标注发展初期,就是由“众包”模式而兴起,当时有很多众包平台,需求方项目要求有大量兼职人员接单,和目前的美团模式差不多。当年,我们的初创公司也是利用信息差,从数据标注平台接单,在市场上找更便宜的人力资源完成任务,但随着数据标注从野蛮生长阶段进入规范化发展阶段,市场上的兼职人员正在减少。越来越多的兼职业务正在被像我们这样的县城标注公司替代。
2019年,我刚刚创业时,知道数据标注的人不多,这行属于刚刚兴起。现在,这行的入门门槛变高了,参与的人也越来越多,市场压价现象很普遍,与刚入行时相比,价格下降了30%左右,我个人觉得数据标注市场已经有点“红海”了。
目前,大部分互联网企业都在自建基地,比如百度、阿里巴巴、京东等互联网大厂在全国都建立了基地,从而获得政策扶持、租金减免等条件。
人工智能的下一站是县城
人工智能训练师流行于县城?我觉得很正常。目前,国内标注行业的价格战愈演愈烈,在质量、效率不断提高的情况下,各大公司拼的无疑就是价格。随着行业的发展,甲方需要不断寻求价格更低的生产力区域,所以各大AI数据服务企业转战县城非常正常。
在县城办公,房租、人力成本相对较低,同时互联网企业确实可以解决一部分人的就业和收入问题。目前,百度拥有行业内最大的自建标注团队,在山东济南、山西临汾、重庆奉节、四川达州、甘肃酒泉、江西新余等10个地区有自建标注基地。
除此之外,政府补贴也是相关企业选择县城的主要原因。2023年1月,贵阳市人民政府网发布的《贵阳鼓励企业吸纳就业政策》中提到,贵阳市符合条件的小微企业、民营经济组织和社会组织吸纳高校毕业生就业的,给予800元/人的一次性吸纳就业补贴及一定额度的创业担保贷款。
数据标注作为劳动密集型产业,当企业更多地选在三四线城市落地,当地政府看重的则是产业化的基地建成后,带动当地就业、促进当地经济发展。智研咨询发布的《2022—2028年中国数据标注与审核行业投资策略探讨及市场规模预测报告》中提到,随着人工智能成为国家发展战略,其势头锐不可当,预计2028年我国数据标注与审核行业市场规模将达262.74亿元。
不久前,Meta发布了史上首个图像分割基础模型——SAM(Segment Anything Model)。有人认为,这代表着计算机视觉领域的GPT-3时刻已经到来。有人说这一模型会替代大量的标注员,我个人认为在数据处理的精度方面,人类无法被替代,至少目前不会,毕竟对于AI产品而言,数据越精准,模型才会越精准。
ChatGPT在社交媒体上引起了巨大的话题度后,国内多家互联网企业相继推出类ChatGPT产品。对我们而言,短期内AI企业对数据标注的需求量还会增加,毕竟数据标注在整个前期产品开发的过程中时间占比可能在全周期的20%至30%,目前这一块的数据确实需要大量的人去做。但是,随着平台标注自动化和预识别的发展,未来一部分标注员可能会被淘汰。
未来,数据标注这行一定会向着规范化和职业化发展,因为需求方的类型和要求会增多,也会涉及各个领域的专业性方面。比如医疗,如果没有医学常识很难做好标注;金融数据也是如此,看不懂财报,就没办法做标注。
(应受访者要求,文中杨科琪为化名)
本文来自微信公众号:新周刊 (ID:new-weekly),作者:徐倩影
AI时代,掌握AI大模型第一手资讯!AI时代不落人后!
免费ChatGPT问答,办公、写作、生活好得力助手!
扫码右边公众号,驾驭AI生产力!