探索艺术新边界?NijiV5掀起CG革命,AI绘图技术哪家强?
“ 感知技术 · 感触CG · 感受艺术 · 感悟心灵 ”
中国很有影响力影视特效CG动画领域自媒体
本文转自公号:AI新智能
🌟随着 generarative AI 和 cloud computing 等技术的飞速发展,它们逐步缩小了大型企业和小型企业的技术壁垒及运营成本,使得竞争格局发生了显著变化。🚀如今,企业间的较量已不再单纯依赖尖端科技,而是转向了人才、创新思维与实际行动力的深度对决。💼在这个数字化时代,人才成为决定胜负的关键因素,他们的专业知识和技能是无法轻易复制的武器。💡创意则是驱动企业持续前行的动力源泉,它能帮助企业找到独特的竞争优势。🔥而执行力,则是将想法变为现实的硬核能力,无论技术如何先进,没有出色的执行团队,一切都是空谈。因此,无论是初创公司还是老牌企业,都需要不断提升人才储备,培养创新文化,并确保策略的有效执行,以在激烈的市场竞争中立于不败之地。💪记得优化关键词哦!SEO friendly phrases like ‘digital时代竞争’, ‘talent differentiation’, ‘innovative thinking’, and ‘execution prowess’ are essential here.
🎉🚀AI艺术革命来了!🎨✨随着AI技术的迭代神速,创新的AIGC(人工智能生成内容)工具正以惊人的速度改变我们的世界,特别是那些令人惊叹的AI绘图模型,如Midjourney、Dreambooth、Novel AI和Stable Diffusion等,它们如同艺术创造者,为各行各业带来了无限可能。🎨🖼️只需轻轻一点,就能生成独特且高质量的设计图像,无论是概念草图还是专业插画,都能轻松应对。这些AI绘图模型的崛起,不仅简化了创作流程,降低了设计门槛,还引领了一场内容创新的风暴。它们通过学习和模仿大师级作品,创造出新颖而富有个性的艺术品,让艺术触手可及。🌍🖼️无论你是艺术家、设计师、创业者还是学生,都能在这些技术的帮助下,释放你的创意潜力,探索无限的设计边界。SEO优化提示:AI绘图模型、AIGC、Midjourney、Dreambooth、Novel AI、Stable Diffusion、人工智能内容生成、艺术创新、设计图像、创作流程、设计门槛、内容创新、艺术品、艺术触手可及、创意潜力、设计边界。
🎨✨AI艺术新篇章:引领潮流的双巨头霸屏✨🎨在璀璨的AI绘图世界中,百花虽盛,却仍以Midjourney与Stable Diffusion这两位巨头独占鳌头,引领着行业风向标。他们的创新实力与广泛影响力,犹如两颗耀眼星辰,熠熠生辉。🚀🌟每一笔勾勒,都蕴含着科技与艺术的深度交融,这两款强大的工具不仅改变了创作方式,更在用户体验上实现了革命性的突破。💻🎨尽管百花齐放,但Midjourney和Stable Diffusion的独特魅力,犹如砥柱中流,稳固而不失创新。未来,他们无疑将继续引领AI绘图领域的发展潮流,为艺术与科技的交汇点注入更多活力。🚀🌈
🎨✨Midjourney夏日新作!💥”Niji-journey V5″震撼来袭——专为二次元动漫爱好者打造!🔥在这个四月,我们以创新的热情,将二维艺术带至新的维度。🌍这款独特的绘图模型,不仅展现了细腻的画风和生动的角色设计,还蕴含了丰富的创意与情感表达。🎨你是否梦想过在像素世界中创造出鲜活的角色?”Niji-journey V5″让你的梦想照进现实!💻立即探索,开启你的二次元艺术之旅吧!🌍✨#NijiJourneyV5 #动漫绘图新高度 #Midjourney创新力
这一模型与以往最大的不同,就是它能“取代”高级原画师了。
🎨🎨Niji V5以其独特的设计魅力与鲜艳的色彩运用,成功俘获大众眼球,也让业界同行为之赞叹,仿佛看到了插画界的未来之星。它的风格多变,每一幅作品都充满艺术感染力,让人惊叹不已,直呼其为大师级水准的创作。✨
🎨得益于风格化参数的加入,Niji V5实现了显著升级,这无疑是它焕然一新的关键所在。用户现在可以自由定制图像风格,释放无限创意,让每一次创作都独一无二。这种技术上的突破不仅提升了产品的艺术表现力,也为内容创作者提供了更大的想象空间。SEO优化提示:#NijiV5# #风格化参数# #创新升级# #个性化创作
简而言之,在该版本下,用户只需使用风格化命令,就能引用不同艺术家设计风格产出图片。
在Niji V5的助力下,人们轻易地生成了许多“大师级”的作品。
Niji V5产出图片的品质相当优秀,几乎覆盖市面上的常见风格。在此基础上,使用者只需要微调设计,基本能够达到大部分优秀高级原画的工作需求。
如此出色的技术,不禁让人对其背后的Midjourney公司产生了强烈的兴趣。
实际上,虽然Midjourney和Stable Diffusion同为当前AI绘画的两大领军者,但其当下的境遇却有着天壤之别。
Stable Diffusion背后的明星公司——Stability AI,目前正面临严重的财政困境,由于没有明确的盈利途径,公司正面临倒闭的危机。
相较之下,Midjourney却运行得风生水起,凭借着付费订阅的商业模式,Midjourney不仅获得了每年1 亿美元的营收,并且在Discord上已经积累了1000多万用户。
同为开发绘画AI的团队,Midjourney是怎么取得今天的成就的呢?
1
延伸人类想象力
虽然Midjourney在不融资的情况下就实现了盈利,但从创建的背景来看,创始人大卫·霍尔茨(David Holz),并不像那种钻进钱眼里的人。
他为Midjourney设立了一个非常不“铜臭”的宗旨:AI 不是现实世界的复刻,而是人类想象力的延伸。
而这样充满科幻色彩的宗旨,和大卫的背景、经历有着很大的关系。
MidJourney的创始人大卫·霍尔茨
作为一个数学专业的博士生,大卫曾在大学期间研究激光雷达、大气科学和火星任务,可谓是一个涉猎甚广,且充满好奇心的“怪才”。
经过了广泛的探索后,大卫似乎找到了自己真正的兴趣所在,于是,在2010年便创立了一家研发手部跟踪技术为主的公司——Leap Motion。
然而,由于与之相关的VR/AR技术一直不成熟,Leap Motion也始终没能做出有具体应用场景的产品。
大卫之前研发的手部追踪产品
最终,2019年,大卫把 Leap Motion 公司卖给了竞争对手 Ultrahaptics。随后,他成立了一个工作室来探索新的机会,
恰巧在这时,AI在生成艺术方面取得了突破。
Transformer架构的出现,彻底改写了图像合成的历史。从此,多模态深度学习整合了NLP和计算机视觉的技术,成为图像合成的艺术方法。
于是,借着生成式AI的东风,大卫创建了Midjourney。
公司团队成员仅11人,其中1位创始人、8位研发人员、1位法务、1位财务。
在公司的构成中,完全没有产品经理、市场销售人员,除了创始人、两个支持性岗位(法务、财务),80%的人员都是研发人员。
而作为中坚力量的研发成员,一半(4位)都是尚未毕业的本科生。
虽然这四位本科生都有一些实操甚至是创业经历,但是确实经验有限,而且也非毕业顶尖名校。
剩下来的几位研发人员,都有着比较丰富的职业经历。
在聚拢人才后,大卫也进一步明确了自己对于Midjourney的理念。
大卫将公司Logos 设计成了一艘在波浪中航行的帆船,意为水既危险,又是文明的驱动力。
懂得如何与水一起生活和工作的人类,将有能力在水中游泳、做船、筑坝发电,从而更好的生活,因此,大卫认为AI是人类想象力的引擎。
然而,在当时生成式AI的竞争格局上,有这类“雄心壮志”的团队,可不只Midjourney一家。
例如Stable Diffusion的母公司 Stability.AI,在创立时也声称要将自己的使命定格为成为世界领先的开源AI公司,并发扬将AI共享于全世界的理念。
然而,口号喊得震天响,理念终归是不能当饭吃的啊。
情怀满满的大卫,之后是怎么解决一系列公司融资、盈利的问题的呢?
2
开源VS闭源
从今天来看,Midjourney的盈利模式看上去十分简单,即通过付费订阅的商业模式,按月向用户收取费用,其标准有3种套餐,分别是10/30/60美元/月。
不过,这样的模式要想行得通,得解决两大关键问题:
1.凭什么让用户产生付费的意愿?
2.大模型训练所需要的高昂成本怎么解决?
先来说说第一点,实际上,当AI图像生成技术开始方兴未艾之时,很多使用者并不觉得这种技术是需要“付费”的。
原因就在于,当时像Stable Diffusion这样的行业龙头,为了吸引大量的开发者,最大程度的把模型用起来,因此采取了开源的模式。
和Dall·E、Midjourney不同,Stable Diffusion是完全免费、不限次数、任何人都可用的。
虽然对硬件有着一定要求,但也能在几秒钟内生成高清图像。
这样的好处在于,开源社区会齐心协力地完善模型文档,共同解决技术难题。这使得代码的迭代速度非常快,优化效率远远高于闭源系统。
但缺点也很显而易见,那就是商业化不够直接,可能为别人“做了嫁衣”。
而相较之下,Midjourney却采用了不那么开放的“闭源系统”。
如果说闭源系统真的有什么好处,那就是针对性更强了。
因为模型闭源,并通过庞大的用户量积累了独有的数据集,可以根据用户需求不断地针对性训练模型,长期来看更有利于建立竞争壁垒。
在探索用户需求这点上,大卫采取了产品上线后边测试边改进的办法。
例如Midjourney模型最开始很慢,需要20分钟才能出一张高质量的图片。后来团队推出了一个做15秒生产图片,但是质量没那么高的版本,
经过多轮测试,团队了解到,速度和质量其实都只是表象,因为不同用户的选择,实际上是多维度的。
在针对用户需求进行调整后,无论是创意行业设计者,还是普通爱好者,都能通过Midjourney满足自身的绘画需求。
除了了解用户需求外,在使用流程方面,Midjourney也并不像Stable Diffusion需要本地部署,操作十分便捷,对显卡和硬件性能也几乎没有要求。
虽为闭源,但Midjourney在使用难易度上,却更像一个“亲民”的大众产品。
于是,Midjourney 获得大量用户后,养成了用户使用习惯,且在开启付费订阅后就进一步加强了用户粘性。
3
算力难题
刚才提到,Midjourney在硬件方面,对用户几乎没什么要求。而这样的原因,则是由于Midjourney所有的图片都是在云上完成并训练的。
但如此庞大的云计算量,必然需要高昂的成本,这就回到了刚才的第二个问题:
在没有融资的情况下,在云上进行大模型训练所需要的高昂,该成本怎么解决?
实际上,大卫解决这个问题的方式很简单,也很不可思议。
当大卫需要找到一个云供应商提供10,000个GPU时,他直接给云供应商的负责人发了封电子邮件,结果对方就直接给到了这些资源,完全不需要风险投资。
看到这儿,也许有人惊得下巴都掉了,这种事在现实中真的可能吗?
当然,供应商并不是抽风了,而是看中了大卫之前的成就和声誉。
大卫之前的创业已经获得了声誉,大卫打从创办Leap Motion的时候起就有一个观点,他觉得技术的最大限制不是规模、成本或速度,而是人们如何与之互动。
Leap Motion的手势互动是一个尝试,到了Midjourney这里,他开始使用更短的绘画关键词(prompt)来催动AI产出。
这样的理念,吸引了每一个了解大卫的人,也让他得到了云供应商的支持。
然而,在获得了供应商的鼎力支持后,大卫也仍然要面对算力捉襟见肘的问题。
从成本来说,Midjourney大约10%的云成本用于训练,90%是用户制作图像的推理。所以几乎所有的成本都在制作图像上。
为解决这一点,Midjourney在世界上八个不同的地区,设立了自己的服务器,比如韩国、日本或荷兰等,在每个时区的夜间,当地人都在睡觉,没有人使用GPU。Midjourney就可以充分利用这些算力,实现GPU负载平衡。
实际上,这种依靠云端服务器来降低成本、加快模型训练的做法,与目前腾讯训练大模型的策略十分相似。
在算力已经愈发成为大模型训练瓶颈的今天,如果在训练开发环节,直接调用云端的大模型和AI算力资源,完成后一键分发到用户终端上,就可以大大降低成本,减少工作量。
因此,Midjourney “云上计算”的这一步棋,着实是摸准了时代的方向。
互联网的演进之路,已经说明,无论To B还是To C行业,都在追求越来越集约精简的终端硬件、越来越低门槛的交互入口、越来越轻盈的软件应用。
所以说,大模型从云入端,是模型服务商实现商业化的必争之地。
4
总结
从Midjourney看似不可思议的创业经历,我们可以发现,在这次AIGC时代的浪潮中,能够脱颖而出的企业、团队,未必是财大气粗的头部大厂。
因为在生成式AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后,各企业真正比拼的,只剩下人才、创意与执行力。
而这也是为什么, Midjourney这类仅有寥寥十几人的小团队能脱颖而出的原因。因为这样依靠少数尖端人才组建的团队,具有大企业所没有的灵活性、创见和魄力。
而这类小团队的创意、灵感,若要真正在市场、社会中扎下根,就离不开对用户多样化、个性化需求的追踪。
这是因为,AIGC技术的“泛用性”,决定了其绝不是针对某一行业、人群,或是某一类企业的技术。
只有在这多样化的需求中,尽可能地满足不同层级用户的特定需求,一款产品才能真正地具有长远的生命。
既服务所有人,又不忽视每一个特殊的人,这或许就是Midjourney成功的最大原因。
end
《UE5高级影像》全日制线下班招生简章——油屋 X 广州美院
(▲点击进入详情页▲)
点击图片进入详情页
概设,数字绘景,动画都可?Stable Houdini来了!
有期待也有失望!2023年Blender都要开发哪些功能?
就很喜欢这个风格,很飒,很帅!
太硬核了吧?!UE5打造超帅气科幻场景全流程